Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cureus ; 14(12): e32437, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2308246

ABSTRACT

The prolonged coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the failures in the public health measures used to manage the spread of this deadly virus. This review focuses its attention on research papers that at their core highlight the individual public health measures instituted by organizations, institutions, and the government of the United States (US) since the start of the COVID-19 pandemic and that were published in 2019 to 2022. Together, these sources help paint a well-rounded view of the US management of this pandemic so that conclusions may be drawn from mistakes that were made and this country may respond better in the future to such situations. This paper is unique because it highlights the areas where improvement is needed, whereas other published work describes the measures taken and how they were carried out, not the failures, which leaves a gap in the literature that this paper hopes to fill. Through a deep dive into public health measures, seven areas in which improvements could be made were pinpointed by the authors. Such measures included mask mandates, social distancing, lockdown/quarantine, hand hygiene, COVID-19 testing, travel screening, and vaccine hesitancy. In exploring each measure, a discussion was carried out about its benefits and shortcomings in alleviating the ramifications of a global pandemic. In addition to the poor supply chain for critical products like personal protective equipment (PPE), the miscommunication between states and federal policies did not allow for the entirety of the US to respond cohesively in the face of the COVID-19 pandemic. This general review is crucial to know what is working and what needs to be changed to increase the benefits provided to the population.

2.
Euro Surveill ; 26(39)2021 09.
Article in English | MEDLINE | ID: covidwho-1448678

ABSTRACT

BackgroundTo mitigate SARS-CoV-2 transmission risks from international air travellers, many countries implemented a combination of up to 14 days of self-quarantine upon arrival plus PCR testing in the early stages of the COVID-19 pandemic in 2020.AimTo assess the effectiveness of quarantine and testing of international travellers to reduce risk of onward SARS-CoV-2 transmission into a destination country in the pre-COVID-19 vaccination era.MethodsWe used a simulation model of air travellers arriving in the United Kingdom from the European Union or the United States, incorporating timing of infection stages while varying quarantine duration and timing and number of PCR tests.ResultsQuarantine upon arrival with a PCR test on day 7 plus a 1-day delay for results can reduce the number of infectious arriving travellers released into the community by a median 94% (95% uncertainty interval (UI): 89-98) compared with a no quarantine/no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median > 99%; 95% UI: 98-100). Even shorter quarantine periods can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (mean incubation period) in quarantine and have at least one negative test before release are highly effective (median reduction 89%; 95% UI: 83-95)).ConclusionThe effect of different screening strategies impacts asymptomatic and symptomatic individuals differently. The choice of an optimal quarantine and testing strategy for unvaccinated air travellers may vary based on the number of possible imported infections relative to domestic incidence.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Pandemics , Quarantine , United Kingdom/epidemiology
3.
Elife ; 92020 02 24.
Article in English | MEDLINE | ID: covidwho-1344521

ABSTRACT

Traveller screening is being used to limit further spread of COVID-19 following its recent emergence, and symptom screening has become a ubiquitous tool in the global response. Previously, we developed a mathematical model to understand factors governing the effectiveness of traveller screening to prevent spread of emerging pathogens (Gostic et al., 2015). Here, we estimate the impact of different screening programs given current knowledge of key COVID-19 life history and epidemiological parameters. Even under best-case assumptions, we estimate that screening will miss more than half of infected people. Breaking down the factors leading to screening successes and failures, we find that most cases missed by screening are fundamentally undetectable, because they have not yet developed symptoms and are unaware they were exposed. Our work underscores the need for measures to limit transmission by individuals who become ill after being missed by a screening program. These findings can support evidence-based policy to combat the spread of COVID-19, and prospective planning to mitigate future emerging pathogens.


Subject(s)
Asymptomatic Infections , Betacoronavirus , Coronavirus Infections/diagnosis , Mass Screening , Pneumonia, Viral/diagnosis , Travel , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Outbreaks , Humans , Infection Control , Mass Screening/methods , Mass Screening/standards , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Risk Assessment , SARS-CoV-2
5.
J Travel Med ; 27(5)2020 08 20.
Article in English | MEDLINE | ID: covidwho-209793

ABSTRACT

BACKGROUND: We evaluated if interventions aimed at air travellers can delay local severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) community transmission in a previously unaffected country. METHODS: We simulated infected air travellers arriving into countries with no sustained SARS-CoV-2 transmission or other introduction routes from affected regions. We assessed the effectiveness of syndromic screening at departure and/or arrival and traveller sensitisation to the COVID-2019-like symptoms with the aim to trigger rapid self-isolation and reporting on symptom onset to enable contact tracing. We assumed that syndromic screening would reduce the number of infected arrivals and that traveller sensitisation reduces the average number of secondary cases. We use stochastic simulations to account for uncertainty in both arrival and secondary infections rates, and present sensitivity analyses on arrival rates of infected travellers and the effectiveness of traveller sensitisation. We report the median expected delay achievable in each scenario and an inner 50% interval. RESULTS: Under baseline assumptions, introducing exit and entry screening in combination with traveller sensitisation can delay a local SARS-CoV-2 outbreak by 8 days (50% interval: 3-14 days) when the rate of importation is 1 infected traveller per week at time of introduction. The additional benefit of entry screening is small if exit screening is effective: the combination of only exit screening and traveller sensitisation can delay an outbreak by 7 days (50% interval: 2-13 days). In the absence of screening, with less effective sensitisation, or a higher rate of importation, these delays shrink rapidly to <4 days. CONCLUSION: Syndromic screening and traveller sensitisation in combination may have marginally delayed SARS-CoV-2 outbreaks in unaffected countries.


Subject(s)
Air Travel , Coronavirus Infections/prevention & control , Mass Screening/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Coronavirus Infections/transmission , Humans , Pneumonia, Viral/transmission , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL